Non-Euclidean Dissimilarities: Causes and Informativeness
نویسندگان
چکیده
In the process of designing pattern recognition systems one may choose a representation based on pairwise dissimilarities between objects. This is especially appealing when a set of discriminative features is difficult to find. Various classification systems have been studied for such a dissimilarity representation: the direct use of the nearest neighbor rule, the postulation of a dissimilarity space and an embedding to a virtual, underlying feature vector space. It appears in several applications that the dissimilarity measures constructed by experts tend to have a non-Euclidean behavior. In this paper we first analyze the causes of such choices and then experimentally verify that the non-Euclidean property of the measure can be informative.
منابع مشابه
Non-Euclidean Dissimilarities: Causes, Embedding and Informativeness
In many pattern recognition applications object structure is essential for the discrimination purpose. In such cases researchers often use recognition schemes based on template matching which lead to the design of non-Euclidean dissimilarity measures. A vector space derived from the embedding of the dissimilarities is desirable in order to use general classifiers. An isometric embedding of the ...
متن کاملRicci flow embedding for rectifying non-Euclidean dissimilarity data
Pairwise dissimilarity representations are frequently used as an alternative to feature vectors in pattern recognition. One of the problems encountered in the analysis of such data, is that the dissimilarities are rarely Euclidean, while statistical learning algorithms often rely on Euclidean dissimilarities. Such non-Euclidean dissimilarities are often corrected or a consistent Euclidean geome...
متن کاملOn Not Making Dissimilarities Euclidean
Non-metric dissimilarity measures may arise in practice e.g. when objects represented by sensory measurements or by structural descriptions are compared. It is an open issue whether such non-metric measures should be corrected in some way to be metric or even Euclidean. The reason for such corrections is the fact that pairwise metric distances are interpreted in metric spaces, while Euclidean d...
متن کاملNon-Euclidean Problems in Pattern Recognition Related to Human Expert Knowledge
Regularities in the world are human defined. Patterns in the observed phenomena are there because we define and recognize them as such. Automatic pattern recognition tries to bridge human judgment with measurements made by artificial sensors. This is done in two steps: representation and generalization. Traditional object representations in pattern recognition, like features and pixels, either ...
متن کاملOn Euclidean Corrections for Non-Euclidean Dissimilarities
Non-Euclidean dissimilarity measures can be well suited for building representation spaces that are more beneficial for pattern classification systems than the related Euclidean ones [1,2]. A non-Euclidean representation space is however cumbersome for training classifiers, as many statistical techniques rely on the Euclidean inner product that is missing there. In this paper we report our find...
متن کامل